Quantum bandit with amplitude amplification exploration in an adversarial environment

Byungjin Cho, Yu Xiao, Pan Hui, Daoyi Dong

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
35 Lataukset (Pure)

Abstrakti

The rapid proliferation of learning systems in an arbitrarily changing environment mandates the need to manage tensions between exploration and exploitation. This work proposes a quantum-inspired bandit learning approach for the learning-and-adapting-based offloading problem where a client observes and learns the costs of each task offloaded to the candidate resource providers, e.g., fog nodes. In this approach, a new action update strategy and novel probabilistic action selection are adopted, provoked by the amplitude amplification and collapse postulate in quantum computation theory. We devise a locally linear mapping between a quantum-mechanical phase in a quantum domain, e.g., Grover-type search algorithm, and a distilled probability-magnitude in a value-based decision-making domain, e.g., adversarial multi-armed bandit algorithm. The proposed algorithm is generalized, via the devised mapping, for better learning weight adjustments on favorable/unfavorable actions, and its effectiveness is verified via simulation.
AlkuperäiskieliEnglanti
Artikkeli10136755
Sivut311-317
Sivumäärä7
JulkaisuIEEE Transactions on Knowledge and Data Engineering
Vuosikerta36
Numero1
Varhainen verkossa julkaisun päivämäärä26 toukok. 2023
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Quantum bandit with amplitude amplification exploration in an adversarial environment'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä