Abstrakti
The rapid proliferation of learning systems in an arbitrarily changing environment mandates the need to manage tensions between exploration and exploitation. This work proposes a quantum-inspired bandit learning approach for the learning-and-adapting-based offloading problem where a client observes and learns the costs of each task offloaded to the candidate resource providers, e.g., fog nodes. In this approach, a new action update strategy and novel probabilistic action selection are adopted, provoked by the amplitude amplification and collapse postulate in quantum computation theory. We devise a locally linear mapping between a quantum-mechanical phase in a quantum domain, e.g., Grover-type search algorithm, and a distilled probability-magnitude in a value-based decision-making domain, e.g., adversarial multi-armed bandit algorithm. The proposed algorithm is generalized, via the devised mapping, for better learning weight adjustments on favorable/unfavorable actions, and its effectiveness is verified via simulation.
| Alkuperäiskieli | Englanti |
|---|---|
| Artikkeli | 10136755 |
| Sivut | 311-317 |
| Sivumäärä | 7 |
| Julkaisu | IEEE Transactions on Knowledge and Data Engineering |
| Vuosikerta | 36 |
| Numero | 1 |
| Varhainen verkossa julkaisun päivämäärä | 26 toukok. 2023 |
| DOI - pysyväislinkit | |
| Tila | Julkaistu - 1 tammik. 2024 |
| OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |