Quantum Backaction Evading Measurement of Collective Mechanical Modes

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Quantum Backaction Evading Measurement of Collective Mechanical Modes. / Ockeloen-Korppi, C. F.; Damskägg, Erno; Pirkkalainen, J. -M.; Clerk, A. A.; Woolley, M. J.; Sillanpää, Mika.

julkaisussa: Physical Review Letters, Vuosikerta 117, Nro 14, 140401, 26.09.2016, s. 1-6.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

Ockeloen-Korppi, CF, Damskägg, E, Pirkkalainen, J-M, Clerk, AA, Woolley, MJ & Sillanpää, M 2016, 'Quantum Backaction Evading Measurement of Collective Mechanical Modes', Physical Review Letters, Vuosikerta. 117, Nro 14, 140401, Sivut 1-6. https://doi.org/10.1103/PhysRevLett.117.140401

APA

Ockeloen-Korppi, C. F., Damskägg, E., Pirkkalainen, J. -M., Clerk, A. A., Woolley, M. J., & Sillanpää, M. (2016). Quantum Backaction Evading Measurement of Collective Mechanical Modes. Physical Review Letters, 117(14), 1-6. [140401]. https://doi.org/10.1103/PhysRevLett.117.140401

Vancouver

Ockeloen-Korppi CF, Damskägg E, Pirkkalainen J-M, Clerk AA, Woolley MJ, Sillanpää M. Quantum Backaction Evading Measurement of Collective Mechanical Modes. Physical Review Letters. 2016 syys 26;117(14):1-6. 140401. https://doi.org/10.1103/PhysRevLett.117.140401

Author

Ockeloen-Korppi, C. F. ; Damskägg, Erno ; Pirkkalainen, J. -M. ; Clerk, A. A. ; Woolley, M. J. ; Sillanpää, Mika. / Quantum Backaction Evading Measurement of Collective Mechanical Modes. Julkaisussa: Physical Review Letters. 2016 ; Vuosikerta 117, Nro 14. Sivut 1-6.

Bibtex - Lataa

@article{c3fe67e88aee451eba1832c3c8237ca9,
title = "Quantum Backaction Evading Measurement of Collective Mechanical Modes",
abstract = "The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.",
keywords = "NANOMECHANICAL MOTION, CAVITY OPTOMECHANICS, NOISE, OSCILLATOR, SCHEME, STATE, LIMIT",
author = "Ockeloen-Korppi, {C. F.} and Erno Damsk{\"a}gg and Pirkkalainen, {J. -M.} and Clerk, {A. A.} and Woolley, {M. J.} and Mika Sillanp{\"a}{\"a}",
year = "2016",
month = "9",
day = "26",
doi = "10.1103/PhysRevLett.117.140401",
language = "English",
volume = "117",
pages = "1--6",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "14",

}

RIS - Lataa

TY - JOUR

T1 - Quantum Backaction Evading Measurement of Collective Mechanical Modes

AU - Ockeloen-Korppi, C. F.

AU - Damskägg, Erno

AU - Pirkkalainen, J. -M.

AU - Clerk, A. A.

AU - Woolley, M. J.

AU - Sillanpää, Mika

PY - 2016/9/26

Y1 - 2016/9/26

N2 - The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.

AB - The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.

KW - NANOMECHANICAL MOTION

KW - CAVITY OPTOMECHANICS

KW - NOISE

KW - OSCILLATOR

KW - SCHEME

KW - STATE

KW - LIMIT

U2 - 10.1103/PhysRevLett.117.140401

DO - 10.1103/PhysRevLett.117.140401

M3 - Article

VL - 117

SP - 1

EP - 6

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 14

M1 - 140401

ER -

ID: 9029497