Quantum-assisted Hilbert-space Gaussian process regression

Ahmad Farooq*, Cristian A. Galvis-Florez, Simo Särkkä

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

31 Lataukset (Pure)

Abstrakti

Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert-space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and swap tests. The quantum principal component analysis is used to estimate the eigenvalues, while the conditional rotations and the Hadamard and swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.
AlkuperäiskieliEnglanti
Artikkeli052410
JulkaisuPhysical Review A
Vuosikerta109
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 7 toukok. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Quantum-assisted Hilbert-space Gaussian process regression'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä