Quantifiable Network Security Measurement: A Study Based on an Index System

Guoquan Li, Yulong Fu*, Zheng Yan, Weilin Hao

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Security Metrics help network administrators master the security status and strengthen security management for many years. Recently, with the usages of many new techniques and network structures, the cyber attacks become complex and the security measurement has received more and more attentions. However, existing methods usually focus on one aspect of security and the indicators used are usually difficult to quantify, which makes it difficult to understand network security status in some real circumstance. In this paper, we consider the network system security from the perspective of attack and defense and the changes of external security environment to propose a comprehensive and quantifiable index system for network security measurement. We illustrate the corresponding theories and the usages of each selected indicators and we also complete the real-time security measurement in various attacks and defenses by using NS3 simulator. The simulation results verify the correctness and rationality of the proposed Security Measurement Index System.

AlkuperäiskieliEnglanti
OtsikkoMachine Learning for Cyber Security - 2nd International Conference, ML4CS 2019, Proceedings
ToimittajatXiaofeng Chen, Xinyi Huang, Jun Zhang
KustantajaSpringer
Sivut47-62
Sivumäärä16
ISBN (painettu)9783030306182
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Machine Learning for Cyber Security - Xi'an, Kiina
Kesto: 19 syysk. 201921 syysk. 2019
Konferenssinumero: 2

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta11806 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Machine Learning for Cyber Security
LyhennettäML4CS
Maa/AlueKiina
KaupunkiXi'an
Ajanjakso19/09/201921/09/2019

Rahoitus

National Key R&D Program of China (grant 2016YFB0800700), NSFC (grants 61602359 and 11571281), Fundamental Research Funds for the Central Universities (JB150115) and the 111 project (grant B16037).

Sormenjälki

Sukella tutkimusaiheisiin 'Quantifiable Network Security Measurement: A Study Based on an Index System'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä