Quality measures based calibration with duration and noise dependency for speaker recognition

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Miranti Indar Mandasari
  • Rahim Saeidi
  • David A. Van Leeuwen

Organisaatiot

  • Radboud University Nijmegen

Kuvaus

Abstract This paper studies the effect of short utterances and noise on the performance of automatic speaker recognition. We focus on calibration aspects, and propose a calibration strategy that uses quality measures to model the calibration parameters. We carry out the proposed calibration by using simple Quality Measure Functions (QMFs) of duration and measured signal-to-noise-ratio from speech segments. We test the effectiveness of the approach using two databases, the development set of the I4U collaboration for the NIST Speaker Recognition Evaluation (SRE) 2012, and the evaluation test material of NIST SRE 2012 itself. In comparison with conventional linear calibration, results show that the proposed QMF approach successfully improves the system performance in terms of both discrimination and calibration.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli2297
Sivut126-137
Sivumäärä12
JulkaisuSpeech Communication
Vuosikerta72
TilaJulkaistu - 14 kesäkuuta 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 10273411