TY - JOUR
T1 - Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis
AU - Yu, Shaoqi
AU - Xiong, Jingjing
AU - Wu, Daidai
AU - Lü, Xiaoshu
AU - Yao, Zhitong
AU - Xu, Shaodan
AU - Tang, Junhong
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Thermal treatment offers an alternative method for the separation of Al foil and cathode materials during spent lithium-ion batteries (LIBs) recycling. In this work, the pyrolysis behavior of cathode from spent LIBs was investigated using advanced thermogravimetric Fourier transformed infrared spectroscopy coupled with gas chromatography-mass spectrometer (TG-FTIR-GC/MS) method. The fate of fluorine present in spent batteries was probed as well. TG analysis showed that the cathode decomposition displayed a three-stage process. The temperatures of maximum mass loss rate were located at 470 °C and 599 °C, respectively. FTIR analysis revealed that the release of CO2 increased as the temperature rose from 195 to 928 °C. However, the evolution of H2O showed a decreasing trend when the temperature increased to above 599 °C. The release of fluoride derivatives also exhibited a decreasing trend, and they were not detected after temperatures increasing to above 470 °C. GC-MS analysis indicated that the release of H2O and CO displayed a similar trend, with larger releasing intensity at the first two stages. The evolution of 1,4-difluorobenzene and 1,3,5-trifluorobenzene also displayed a similar trend—larger releasing intensity at the first two stages. However, the release of CO2 showed a different trend, with the largest release intensity at the third stage, as did the release of 1,2,4-trifluorobenzene, with the release mainly focused at the temperature of 300–400 °C. The release intensities of 1,2,4-trifluorobenzene and 1,3,5-trifluorobenzene were comparable, although smaller than that of 1,4-difluorobenzene. This study will offer practical support for the large-scale recycling of spent LIBs.
AB - Thermal treatment offers an alternative method for the separation of Al foil and cathode materials during spent lithium-ion batteries (LIBs) recycling. In this work, the pyrolysis behavior of cathode from spent LIBs was investigated using advanced thermogravimetric Fourier transformed infrared spectroscopy coupled with gas chromatography-mass spectrometer (TG-FTIR-GC/MS) method. The fate of fluorine present in spent batteries was probed as well. TG analysis showed that the cathode decomposition displayed a three-stage process. The temperatures of maximum mass loss rate were located at 470 °C and 599 °C, respectively. FTIR analysis revealed that the release of CO2 increased as the temperature rose from 195 to 928 °C. However, the evolution of H2O showed a decreasing trend when the temperature increased to above 599 °C. The release of fluoride derivatives also exhibited a decreasing trend, and they were not detected after temperatures increasing to above 470 °C. GC-MS analysis indicated that the release of H2O and CO displayed a similar trend, with larger releasing intensity at the first two stages. The evolution of 1,4-difluorobenzene and 1,3,5-trifluorobenzene also displayed a similar trend—larger releasing intensity at the first two stages. However, the release of CO2 showed a different trend, with the largest release intensity at the third stage, as did the release of 1,2,4-trifluorobenzene, with the release mainly focused at the temperature of 300–400 °C. The release intensities of 1,2,4-trifluorobenzene and 1,3,5-trifluorobenzene were comparable, although smaller than that of 1,4-difluorobenzene. This study will offer practical support for the large-scale recycling of spent LIBs.
KW - Cathode
KW - Electronic waste
KW - Lithium-ion batteries
KW - Polyvinylidene fluoride binder
KW - Pyrolysis
UR - http://www.scopus.com/inward/record.url?scp=85087814239&partnerID=8YFLogxK
U2 - 10.1007/s11356-020-10108-4
DO - 10.1007/s11356-020-10108-4
M3 - Article
AN - SCOPUS:85087814239
SN - 0944-1344
VL - 27
SP - 40205
EP - 40209
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 32
ER -