Detecting stochastic inclusions in electrical impedance tomography

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Detecting stochastic inclusions in electrical impedance tomography. / Barth, Andrea; Harrach, Bastian; Hyvönen, Nuutti; Mustonen, Lauri.

julkaisussa: Inverse Problems, Vuosikerta 33, Nro 11, 115012, 10.2017, s. 1-18.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

Barth, A, Harrach, B, Hyvönen, N & Mustonen, L 2017, 'Detecting stochastic inclusions in electrical impedance tomography' Inverse Problems, Vuosikerta. 33, Nro 11, 115012, Sivut 1-18. https://doi.org/10.1088/1361-6420/aa8f5c

APA

Vancouver

Author

Barth, Andrea ; Harrach, Bastian ; Hyvönen, Nuutti ; Mustonen, Lauri. / Detecting stochastic inclusions in electrical impedance tomography. Julkaisussa: Inverse Problems. 2017 ; Vuosikerta 33, Nro 11. Sivut 1-18.

Bibtex - Lataa

@article{d47b0a7025964d528acf762e45dcd334,
title = "Detecting stochastic inclusions in electrical impedance tomography",
abstract = "This work considers the inclusion detection problem of electrical impedance tomography with stochastic conductivities. It is shown that a conductivity anomaly with a random conductivity can be identified by applying the factorization method or the monotonicity method to the mean value of the corresponding Neumann-to-Dirichlet map provided that the anomaly has high enough contrast in the sense of expectation. The theoretical results are complemented by numerical examples in two spatial dimensions.",
keywords = "electrical impedance tomography, stochastic conductivity, inclusion detection, factorization method, monotonicity method",
author = "Andrea Barth and Bastian Harrach and Nuutti Hyv{\"o}nen and Lauri Mustonen",
year = "2017",
month = "10",
doi = "10.1088/1361-6420/aa8f5c",
language = "English",
volume = "33",
pages = "1--18",
journal = "Inverse Problems",
issn = "0266-5611",
number = "11",

}

RIS - Lataa

TY - JOUR

T1 - Detecting stochastic inclusions in electrical impedance tomography

AU - Barth, Andrea

AU - Harrach, Bastian

AU - Hyvönen, Nuutti

AU - Mustonen, Lauri

PY - 2017/10

Y1 - 2017/10

N2 - This work considers the inclusion detection problem of electrical impedance tomography with stochastic conductivities. It is shown that a conductivity anomaly with a random conductivity can be identified by applying the factorization method or the monotonicity method to the mean value of the corresponding Neumann-to-Dirichlet map provided that the anomaly has high enough contrast in the sense of expectation. The theoretical results are complemented by numerical examples in two spatial dimensions.

AB - This work considers the inclusion detection problem of electrical impedance tomography with stochastic conductivities. It is shown that a conductivity anomaly with a random conductivity can be identified by applying the factorization method or the monotonicity method to the mean value of the corresponding Neumann-to-Dirichlet map provided that the anomaly has high enough contrast in the sense of expectation. The theoretical results are complemented by numerical examples in two spatial dimensions.

KW - electrical impedance tomography

KW - stochastic conductivity

KW - inclusion detection

KW - factorization method

KW - monotonicity method

UR - https://arxiv.org/abs/1706.03962

U2 - 10.1088/1361-6420/aa8f5c

DO - 10.1088/1361-6420/aa8f5c

M3 - Article

VL - 33

SP - 1

EP - 18

JO - Inverse Problems

JF - Inverse Problems

SN - 0266-5611

IS - 11

M1 - 115012

ER -

ID: 16783987