Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Standard

Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. / Rozza, Gianluigi; Lassila, Toni; Manzoni, Andrea.

Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference. Vuosikerta 76 LNCSE 2011. s. 307-315 (Lecture Notes in Computational Science and Engineering; Vuosikerta 76 LNCSE).

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Harvard

Rozza, G, Lassila, T & Manzoni, A 2011, Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. julkaisussa Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference. Vuosikerta. 76 LNCSE, Lecture Notes in Computational Science and Engineering, Vuosikerta. 76 LNCSE, Sivut 307-315, Trondheim, Norja, 22/06/2009. DOI: 10.1007/978-3-642-15337-2_28

APA

Rozza, G., Lassila, T., & Manzoni, A. (2011). Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. teoksessa Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference (Vuosikerta 76 LNCSE, Sivut 307-315). (Lecture Notes in Computational Science and Engineering; Vuosikerta 76 LNCSE). DOI: 10.1007/978-3-642-15337-2_28

Vancouver

Rozza G, Lassila T, Manzoni A. Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. julkaisussa Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference. Vuosikerta 76 LNCSE. 2011. s. 307-315. (Lecture Notes in Computational Science and Engineering). Saatavuus:, DOI: 10.1007/978-3-642-15337-2_28

Author

Rozza, Gianluigi ; Lassila, Toni ; Manzoni, Andrea. / Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference. Vuosikerta 76 LNCSE 2011. Sivut 307-315 (Lecture Notes in Computational Science and Engineering).

Bibtex - Lataa

@inproceedings{4fff8256ef2f45ac8bd19b75cc0da8ad,
title = "Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map",
abstract = "Reduced basis approximations for geometrically parametrized advection-diffusion equations are investigated. The parametric domains are assumed to be images of a reference domain through a piecewise polynomial map; this may lead to nonaffinely parametrized diffusion tensors that are treated with an empirical interpolation method. An a posteriori error bound including a correction term due to this approximation is given. Results concerning the applied methodology and the rigor of the corrected error estimator are shown for a shape optimization problem in a thermal flow.",
author = "Gianluigi Rozza and Toni Lassila and Andrea Manzoni",
year = "2011",
doi = "10.1007/978-3-642-15337-2_28",
language = "English",
isbn = "9783642153365",
volume = "76 LNCSE",
series = "Lecture Notes in Computational Science and Engineering",
pages = "307--315",
booktitle = "Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference",

}

RIS - Lataa

TY - GEN

T1 - Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map

AU - Rozza,Gianluigi

AU - Lassila,Toni

AU - Manzoni,Andrea

PY - 2011

Y1 - 2011

N2 - Reduced basis approximations for geometrically parametrized advection-diffusion equations are investigated. The parametric domains are assumed to be images of a reference domain through a piecewise polynomial map; this may lead to nonaffinely parametrized diffusion tensors that are treated with an empirical interpolation method. An a posteriori error bound including a correction term due to this approximation is given. Results concerning the applied methodology and the rigor of the corrected error estimator are shown for a shape optimization problem in a thermal flow.

AB - Reduced basis approximations for geometrically parametrized advection-diffusion equations are investigated. The parametric domains are assumed to be images of a reference domain through a piecewise polynomial map; this may lead to nonaffinely parametrized diffusion tensors that are treated with an empirical interpolation method. An a posteriori error bound including a correction term due to this approximation is given. Results concerning the applied methodology and the rigor of the corrected error estimator are shown for a shape optimization problem in a thermal flow.

UR - http://www.scopus.com/inward/record.url?scp=78651572418&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-15337-2_28

DO - 10.1007/978-3-642-15337-2_28

M3 - Conference contribution

SN - 9783642153365

VL - 76 LNCSE

T3 - Lecture Notes in Computational Science and Engineering

SP - 307

EP - 315

BT - Spectral and High Order Methods for Partial Differential Equations - Selected Papers from the ICOSAHOM'09 Conference

ER -

ID: 18253115