Quasiconformal Teichmueller theory as an analytical foundation for two-dimensional conformal field theory

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Tutkijat

Organisaatiot

  • University of Manitoba
  • Uppsala University

Kuvaus

The functorial mathematical definition of conformal field theory was first formulated approximately 30 years ago. The underlying geometric category is based on the moduli space of Riemann surfaces with parametrized boundary components and the sewing operation. We survey the recent and careful study of these objects, which has led to significant connections with quasiconformal Teichmuller theory and geometric function theory. In particular we propose that the natural analytic setting for conformal field theory is the moduli space of Riemann surfaces with so-called Weil-Petersson class parametrizations. A collection of rigorous analytic results is advanced here as evidence. This class of parametrizations has the required regularity for CFT on one hand, and on the other hand are natural and of interest in their own right in geometric function theory.

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoLie Algebras, Vertex Operator Algebras, and Related Topics
AlaotsikkoConference in honor of J. Lepowsky and R. Wilson, August 14-18, 2015, University of Notre Dame, Notre Dame, Indiana
ToimittajatKatrina Barron, Elizabeth Jurisich, Antun Milas, Kailash Misra
TilaJulkaistu - 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaLie Algebras, Vertex Operator Algebras, and Related Topics - University of Notre Dame, Notre Dame, Yhdysvallat
Kesto: 14 elokuuta 201518 elokuuta 2015

Julkaisusarja

NimiContemporary Mathematics
KustantajaAmerican Mathematical Society
Vuosikerta695

Conference

ConferenceLie Algebras, Vertex Operator Algebras, and Related Topics
MaaYhdysvallat
KaupunkiNotre Dame
Ajanjakso14/08/201518/08/2015

ID: 14696594