Projekteja vuodessa
Abstrakti
Temporal graph networks (TGNs) have gained prominence as models for embedding dynamic interactions, but little is known about their theoretical underpinnings. We establish fundamental results about the representational power and limits of the two main categories of TGNs: those that aggregate temporal walks (WA-TGNs), and those that augment local message passing with recurrent memory modules (MP-TGNs). Specifically, novel constructions reveal the inadequacy of MP-TGNs and WA-TGNs, proving that neither category subsumes the other. We extend the 1-WL (Weisfeiler-Leman) test to temporal graphs, and show that the most powerful MP-TGNs should use injective updates, as in this case they become as expressive as the temporal WL. Also, we show that sufficiently deep MP-TGNs cannot benefit from memory, and MP/WA-TGNs fail to compute graph properties such as girth. These theoretical insights lead us to PINT --- a novel architecture that leverages injective temporal message passing and relative positional features. Importantly, PINT is provably more expressive than both MP-TGNs and WA-TGNs. PINT significantly outperforms existing TGNs on several real-world benchmarks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Neural Information Processing Systems 35 (NeurIPS 2022) |
Toimittajat | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Kustantaja | Morgan Kaufmann Publishers |
Sivumäärä | 13 |
ISBN (painettu) | 978-1-7138-7108-8 |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Neural Information Processing Systems - New Orleans, Yhdysvallat Kesto: 28 marrask. 2022 → 9 jouluk. 2022 Konferenssinumero: 36 https://nips.cc/ |
Julkaisusarja
Nimi | Advances in Neural Information Processing Systems |
---|---|
Kustantaja | Morgan Kaufmann Publishers |
Vuosikerta | 35 |
ISSN (painettu) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Lyhennettä | NeurIPS |
Maa/Alue | Yhdysvallat |
Kaupunki | New Orleans |
Ajanjakso | 28/11/2022 → 09/12/2022 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Provably expressive temporal graph networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
HEALED/Kaski S.: Human-steered next-generation machine learning for reviving drug design (HEALED)
Kaski, S. (Vastuullinen tutkija), Martinelli, J. (Projektin jäsen), Naumov, A. (Projektin jäsen) & Zhang, X. (Projektin jäsen)
01/09/2021 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
ELISE: European Learning and Intelligent Systems Excellence
01/09/2020 → 31/08/2024
Projekti: EU: Framework programmes funding
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding