Probing the local response of a two-dimensional liquid foam

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Probing the local response of a two-dimensional liquid foam. / Viitanen, Leevi; Koivisto, Juha; Puisto, Antti; Alava, Mikko; Santucci, Stephane.

julkaisussa: European Physical Journal B, Vuosikerta 92, Nro 2, 38, 01.02.2019, s. 1-6.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

APA

Vancouver

Author

Bibtex - Lataa

@article{5880d0e20176458685d321fe6bf4de50,
title = "Probing the local response of a two-dimensional liquid foam",
abstract = "Aqueous foams are viscoelastic yield stress fluids. Due to their complex rheology, foam flow around an obstacle embedded in a 2D Hele-Shaw cell has been widely studied. Typically, in such geometry in the moving flow reference frame the flow field of viscoelastic fluids exhibit a quadrupolar structure characterized by a negative wake. Here, we introduce a measuring geometry, new in this context, whereby instead of flowing the foam around the obstacle, we move the obstacle as an intruder inside the foam. The proposed setup makes it possible to independently control the driving velocity and the liquid foam properties, such as the gas fraction and polydispersity. We show that the liquid foam velocity field around the intruder is similar to the one observed in viscoelastic fluids, in particular the emergence of a negative wake, e.g. a velocity overshoot downstream side of the obstacle. However, surprisingly, the intensity of this velocity overshoot decreases with the number of intruder passes, probably related to the evolution of the local disordered structure of the liquid foam. Graphical abstract: [Figure not available: see fulltext.].",
author = "Leevi Viitanen and Juha Koivisto and Antti Puisto and Mikko Alava and Stephane Santucci",
year = "2019",
month = "2",
day = "1",
doi = "10.1140/epjb/e2019-90402-x",
language = "English",
volume = "92",
pages = "1--6",
journal = "European Physical Journal B. Condensed Matter and Complex Systems",
issn = "1434-6028",
number = "2",

}

RIS - Lataa

TY - JOUR

T1 - Probing the local response of a two-dimensional liquid foam

AU - Viitanen, Leevi

AU - Koivisto, Juha

AU - Puisto, Antti

AU - Alava, Mikko

AU - Santucci, Stephane

PY - 2019/2/1

Y1 - 2019/2/1

N2 - Aqueous foams are viscoelastic yield stress fluids. Due to their complex rheology, foam flow around an obstacle embedded in a 2D Hele-Shaw cell has been widely studied. Typically, in such geometry in the moving flow reference frame the flow field of viscoelastic fluids exhibit a quadrupolar structure characterized by a negative wake. Here, we introduce a measuring geometry, new in this context, whereby instead of flowing the foam around the obstacle, we move the obstacle as an intruder inside the foam. The proposed setup makes it possible to independently control the driving velocity and the liquid foam properties, such as the gas fraction and polydispersity. We show that the liquid foam velocity field around the intruder is similar to the one observed in viscoelastic fluids, in particular the emergence of a negative wake, e.g. a velocity overshoot downstream side of the obstacle. However, surprisingly, the intensity of this velocity overshoot decreases with the number of intruder passes, probably related to the evolution of the local disordered structure of the liquid foam. Graphical abstract: [Figure not available: see fulltext.].

AB - Aqueous foams are viscoelastic yield stress fluids. Due to their complex rheology, foam flow around an obstacle embedded in a 2D Hele-Shaw cell has been widely studied. Typically, in such geometry in the moving flow reference frame the flow field of viscoelastic fluids exhibit a quadrupolar structure characterized by a negative wake. Here, we introduce a measuring geometry, new in this context, whereby instead of flowing the foam around the obstacle, we move the obstacle as an intruder inside the foam. The proposed setup makes it possible to independently control the driving velocity and the liquid foam properties, such as the gas fraction and polydispersity. We show that the liquid foam velocity field around the intruder is similar to the one observed in viscoelastic fluids, in particular the emergence of a negative wake, e.g. a velocity overshoot downstream side of the obstacle. However, surprisingly, the intensity of this velocity overshoot decreases with the number of intruder passes, probably related to the evolution of the local disordered structure of the liquid foam. Graphical abstract: [Figure not available: see fulltext.].

UR - http://www.scopus.com/inward/record.url?scp=85061625159&partnerID=8YFLogxK

U2 - 10.1140/epjb/e2019-90402-x

DO - 10.1140/epjb/e2019-90402-x

M3 - Article

AN - SCOPUS:85061625159

VL - 92

SP - 1

EP - 6

JO - European Physical Journal B. Condensed Matter and Complex Systems

JF - European Physical Journal B. Condensed Matter and Complex Systems

SN - 1434-6028

IS - 2

M1 - 38

ER -

ID: 32267298