Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. / Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J.; Jarillo-Herrero, P.

julkaisussa: Science, Vuosikerta 360, Nro 6394, 01.01.2018, s. 1218-1222.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

Klein, DR, MacNeill, D, Lado, JL, Soriano, D, Navarro-Moratalla, E, Watanabe, K, Taniguchi, T, Manni, S, Canfield, P, Fernández-Rossier, J & Jarillo-Herrero, P 2018, 'Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling', Science, Vuosikerta. 360, Nro 6394, Sivut 1218-1222. https://doi.org/10.1126/science.aar3617

APA

Klein, D. R., MacNeill, D., Lado, J. L., Soriano, D., Navarro-Moratalla, E., Watanabe, K., ... Jarillo-Herrero, P. (2018). Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 360(6394), 1218-1222. https://doi.org/10.1126/science.aar3617

Vancouver

Klein DR, MacNeill D, Lado JL, Soriano D, Navarro-Moratalla E, Watanabe K et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 2018 tammi 1;360(6394):1218-1222. https://doi.org/10.1126/science.aar3617

Author

Klein, D. R. ; MacNeill, D. ; Lado, J. L. ; Soriano, D. ; Navarro-Moratalla, E. ; Watanabe, K. ; Taniguchi, T. ; Manni, S. ; Canfield, P. ; Fernández-Rossier, J. ; Jarillo-Herrero, P. / Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Julkaisussa: Science. 2018 ; Vuosikerta 360, Nro 6394. Sivut 1218-1222.

Bibtex - Lataa

@article{e0dfc46b12204f838149045466885f3e,
title = "Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling",
abstract = "Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field.We electrically detect the magnetic ground state and interlayer coupling and observe a fieldinducedmetamagnetic transition.The metamagnetic transition results in magnetoresistances of 95, 300, and 550{\%} for bilayer, trilayer, and tetralayer CrI3 barriers, respectively.We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.",
author = "Klein, {D. R.} and D. MacNeill and Lado, {J. L.} and D. Soriano and E. Navarro-Moratalla and K. Watanabe and T. Taniguchi and S. Manni and P. Canfield and J. Fern{\'a}ndez-Rossier and P. Jarillo-Herrero",
year = "2018",
month = "1",
day = "1",
doi = "10.1126/science.aar3617",
language = "English",
volume = "360",
pages = "1218--1222",
journal = "Science",
issn = "0036-8075",
number = "6394",

}

RIS - Lataa

TY - JOUR

T1 - Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

AU - Klein, D. R.

AU - MacNeill, D.

AU - Lado, J. L.

AU - Soriano, D.

AU - Navarro-Moratalla, E.

AU - Watanabe, K.

AU - Taniguchi, T.

AU - Manni, S.

AU - Canfield, P.

AU - Fernández-Rossier, J.

AU - Jarillo-Herrero, P.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field.We electrically detect the magnetic ground state and interlayer coupling and observe a fieldinducedmetamagnetic transition.The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively.We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.

AB - Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field.We electrically detect the magnetic ground state and interlayer coupling and observe a fieldinducedmetamagnetic transition.The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively.We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.

UR - http://www.scopus.com/inward/record.url?scp=85046549600&partnerID=8YFLogxK

U2 - 10.1126/science.aar3617

DO - 10.1126/science.aar3617

M3 - Article

VL - 360

SP - 1218

EP - 1222

JO - Science

JF - Science

SN - 0036-8075

IS - 6394

ER -

ID: 36718448