Privacy-preserving federated learning based on multi-key homomorphic encryption

Jing Ma, Si-Ahmed Naas, Stephan Sigg, Xixiang Lyu*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

With the advance of machine learning and the Internet of Things (IoT), security and privacy have become critical concerns in mobile services and networks. Transferring data to a central unit violates the privacy of sensitive data. Federated learning mitigates this need to transfer local data by sharing model updates only. However, privacy leakage remains an issue. This paper proposes xMK-CKKS, an improved version of the MK-CKKS multi-key homomorphic encryption protocol, to design a novel privacy-preserving federated learning scheme. In this scheme, model updates are encrypted via an aggregated public key before sharing with a server for aggregation. For decryption, a collaboration among all participating devices is required. Our scheme prevents privacy leakage from publicly shared model updates in federated learning and is resistant to collusion between k < N - 1 participating devices and the server. The evaluation demonstrates that the scheme outperforms other innovations in communication and computational cost while preserving model accuracy.

AlkuperäiskieliEnglanti
Sivut5880-5901
Sivumäärä22
JulkaisuInternational Journal of Intelligent Systems
Vuosikerta37
Numero9
Varhainen verkossa julkaisun päivämäärä17 tammik. 2022
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 17 tammik. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Privacy-preserving federated learning based on multi-key homomorphic encryption'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä