Privacy-preserving Computation over Encrypted Vectors

Rui Hu, Wenxiu Ding*, Zheng Yan

*Tämän työn vastaava kirjoittaja

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

    3 Sitaatiot (Scopus)
    114 Lataukset (Pure)

    Abstrakti

    Cloud computing allows users to outsource massive amounts of data to a cloud server for storage and analysis, which breaks the bottleneck of limited local resources. However, it makes user data exposed and possibly be accessed by unauthorized entities. Owing to privacy concern, users are inclined to upload encrypted data to a cloud server, but encryption limits operations over original data and affects access to a processing result. Though lots of schemes have been proposed to achieve some basic operations over encrypted data, it still lacks the research on the dot product of encrypted vectors. In this paper, we propose two privacy-preserving dot product schemes based on a dual server model, which can flexibly support single-user access and multiuser access to a final data processing result. Furthermore, we extend them to achieve privacy-preserving Support Vector Machine (SVM) prediction algorithm. Finally, we give security analysis of our proposed schemes and demonstrate their availability and practicality through simulation and comparison with existing works.
    AlkuperäiskieliEnglanti
    Otsikko2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
    KustantajaIEEE
    Sivumäärä6
    ISBN (elektroninen)978-1-7281-8298-8
    DOI - pysyväislinkit
    TilaJulkaistu - jouluk. 2020
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE Global Communications Conference - Taipei, Taiwan
    Kesto: 7 jouluk. 202011 jouluk. 2020

    Julkaisusarja

    NimiIEEE Global Communications Conference
    ISSN (painettu)2334-0983
    ISSN (elektroninen)2576-6813

    Conference

    ConferenceIEEE Global Communications Conference
    LyhennettäGLOBECOM
    Maa/AlueTaiwan
    KaupunkiTaipei
    Ajanjakso07/12/202011/12/2020

    Sormenjälki

    Sukella tutkimusaiheisiin 'Privacy-preserving Computation over Encrypted Vectors'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä