Abstrakti

Preference learning methods make use of models of human choice in order to infer the latent utilities that underlie human behaviour. However, accurate modeling of human choice behavior is challenging due to a range of context effects that arise from how humans contrast and evaluate options. Cognitive science has proposed several models that capture these intricacies but, due to their intractable nature, work on preference learning has, in practice, had to rely on tractable but simplified variants of the well-known Bradley-Terry model. In this paper, we take one state-of-the-art intractable cognitive model and propose a tractable surrogate that is suitable for deployment in preference learning. We then introduce a mechanism for fitting the surrogate to human data that cannot be explained by the original cognitive model. We demonstrate on large-scale human data that this model produces significantly better inferences on static and actively elicited data than existing Bradley-Terry variants. We further show in simulation that when using this model for preference learning, we can significantly improve a utility in a range of real-world tasks.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 37 (NeurIPS 2024)
ToimittajatA. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang
KustantajaCurran Associates Inc.
ISBN (painettu)9798331314385
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Kanada
Kesto: 10 jouluk. 202415 jouluk. 2024
Konferenssinumero: 38
https://neurips.cc/Conferences/2024

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaCurran Associates, Inc.
Vuosikerta37
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso10/12/202415/12/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Preference Learning of Latent Decision Utilities with a Human-like Model of Preferential Choice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä