Prediction of preterm infant mortality with Gaussian process classification

Olli-Pekka Rinta-Koski, Simo Särkkä, Jaakko Hollmen, Sture Andersson

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

We present a method for predicting preterm infant in-hospital-mortality using Bayesian Gaussian process classification. We combined features extracted from sensor measurements, made during the first 24 hours of care for 581 Very Low Birth Weight infants, with standard clinical features calculated on arrival at the Neonatal Intensive Care Unit. We achieved a classification result with area under curve of 0.94 (standard error 0.02), which is in excess of the results achieved by using the clinical standard SNAP-II and SNAPPE-II scores.
AlkuperäiskieliEnglanti
OtsikkoProceedings of 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
KustantajaEuropean Symposium on Artificial Neural Networks (ESANN)
Sivut193-198
ISBN (painettu)9782875870391
TilaJulkaistu - 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEUROPEAN SYMPOSIUM ON ARTIFICIAL NEURAL NETWORKS, COMPUTATIONAL INTELLIGENCE AND MACHINE LEARNING - Bruges, Belgia
Kesto: 27 huhtik. 201629 huhtik. 2016
Konferenssinumero: 24

Conference

ConferenceEUROPEAN SYMPOSIUM ON ARTIFICIAL NEURAL NETWORKS, COMPUTATIONAL INTELLIGENCE AND MACHINE LEARNING
LyhennettäESANN
Maa/AlueBelgia
KaupunkiBruges
Ajanjakso27/04/201629/04/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Prediction of preterm infant mortality with Gaussian process classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä