Abstrakti
We present a method for predicting preterm infant in-hospital-mortality using Bayesian Gaussian process classification. We combined features extracted from sensor measurements, made during the first 24 hours of care for 581 Very Low Birth Weight infants, with standard clinical features calculated on arrival at the Neonatal Intensive Care Unit. We achieved a classification result with area under curve of 0.94 (standard error 0.02), which is in excess of the results achieved by using the clinical standard SNAP-II and SNAPPE-II scores.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
Kustantaja | European Symposium on Artificial Neural Networks (ESANN) |
Sivut | 193-198 |
ISBN (painettu) | 9782875870391 |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | EUROPEAN SYMPOSIUM ON ARTIFICIAL NEURAL NETWORKS, COMPUTATIONAL INTELLIGENCE AND MACHINE LEARNING - Bruges, Belgia Kesto: 27 huhtik. 2016 → 29 huhtik. 2016 Konferenssinumero: 24 |
Conference
Conference | EUROPEAN SYMPOSIUM ON ARTIFICIAL NEURAL NETWORKS, COMPUTATIONAL INTELLIGENCE AND MACHINE LEARNING |
---|---|
Lyhennettä | ESANN |
Maa/Alue | Belgia |
Kaupunki | Bruges |
Ajanjakso | 27/04/2016 → 29/04/2016 |