Prediction of Heat Transfer Coefficient During Condensation of R404a in Helically Coiled Tubes Using Adaptive Neuro-Fuzzy Inference System

Ali Khosravi, Juan Garcia, Tulio Correa, Luiz Machado

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionProfessional

Abstrakti

Condenser is an important heat exchanger widely used in refrigeration and air conditioning systems. Heat transfer coefficient (HTC) of two-phase flow of refrigerants is important in order to design a heat exchanger. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed to predict the HTC under condensation of R404a in a helically coiled tube. Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) are used to optimize the ANFIS model. Vapor quality, mass flux of refrigerant, pitch and curvature radius are considered as input variables of the network and HTC is selected as its output variable. The results illustrate that using GA to optimize the ANFIS model improves correlation coefficient with approximately 8% and decreases the value of RMSE around 52% for testing datasets. Also, the ANFIS model optimized with PSO algorithm reports the best performance for the predicted HTC with correlation coefficient and MAPE respectively as 0.9876 and 1.35% for the testing datasets.
AlkuperäiskieliEnglanti
Otsikko17th Brazilian Congress of Thermal Sciences and Engineering
AlaotsikkoNovember 25th-28th, 2018, Águas de Lindóia, SP, Brazil
TilaJulkaistu - 2018
OKM-julkaisutyyppiD3 Ammatillisen konferenssin julkaisusarja
TapahtumaBrazilian Congress of Thermal Sciences and Engineering - Aguas de Lindoia, Brasilia
Kesto: 25 marraskuuta 201828 marraskuuta 2018
Konferenssinumero: 17

Conference

ConferenceBrazilian Congress of Thermal Sciences and Engineering
LyhennettäENCIT
Maa/AlueBrasilia
KaupunkiAguas de Lindoia
Ajanjakso25/11/201828/11/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Prediction of Heat Transfer Coefficient During Condensation of R404a in Helically Coiled Tubes Using Adaptive Neuro-Fuzzy Inference System'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä