Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning

Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp Slusallek, Perttu Hämäläinen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

44 Lataukset (Pure)

Abstrakti

A common problem of mid-air interaction is excessive arm fatigue, known as the "Gorilla arm" effect. To predict and prevent such problems at a low cost, we investigate user testing of mid-air interaction without real users, utilizing biomechanically simulated AI agents trained using deep Reinforcement Learning (RL). We implement this in a pointing task and four experimental conditions, demonstrating that the simulated fatigue data matches human fatigue data. We also compare two effort models: 1) instantaneous joint torques commonly used in computer animation and robotics, and 2) the recent Three Compartment Controller (3CC-) model from biomechanical literature. 3CC- yields movements that are both more efficient and relaxed, whereas with instantaneous joint torques, the RL agent can easily generate movements that are quickly tiring or only reach the targets slowly and inaccurately. Our work demonstrates that deep RL combined with the 3CC- provides a viable tool for predicting both interaction movements and user experiencein silico, without users.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2020 CHI Conference on Human Factors in Computing Systems
JulkaisupaikkaNew York, NY, USA
KustantajaAssociation for Computing Machinery (ACM)
Sivut1–13
Sivumäärä13
ISBN (painettu)9781450367080
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaACM SIGCHI Annual Conference on Human Factors in Computing Systems - Honolulu, Yhdysvallat
Kesto: 26 huhtikuuta 202030 huhtikuuta 2020
https://chi2020.acm.org/

Conference

ConferenceACM SIGCHI Annual Conference on Human Factors in Computing Systems
LyhennettäACM CHI
MaaYhdysvallat
KaupunkiHonolulu
Ajanjakso26/04/202030/04/2020
www-osoite

Sormenjälki Sukella tutkimusaiheisiin 'Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä