TY - JOUR
T1 - Polarimetric SAR data in land cover mapping in boreal zone
AU - Lönnqvist, Anne
AU - Rauste, Yrjö
AU - Molinier, Matthieu
AU - Häme, Tuomas
PY - 2010/10/1
Y1 - 2010/10/1
N2 - This paper compares ALOS PALSAR fully polarimetric and dual-polarized data in the application area of land cover mapping. To assure versatile comparison of the data, different classification methods and different features of data are used. Two of the classification methods used are based on supervised classification and two on unsupervised classification. Polarimetric data are used in three ways: 1) as fully polarimetric data; 2) features calculated from fully polarimetric data; and 3) intensity data of selected channels. Combinations of six (water, field, sparse forest, dense forest, peat land, and urban areas), five, four, and three classes were used for classification. Fully polarimetric data gave better results (87.5%84.7% with three classes; open land areas, forest, and water) than intensity data only (83.6%78.6%), but the differences in the overall accuracies between the methods were not more than 7.6%. Kappa coefficients of agreement are moderate for all the classifications. Supervised classification can be expected to perform better than unsupervised classification, given that the training areas can be selected accurately. Dual polarization data were found to be an attractive alternative in cases where fully polarimetric data are not available or it is of low resolution. With intensities of selected polarimetric features, it was possible to obtain a high classification accuracy as with fully polarimetric data. This also opens possibilities for nonspecialist users to benefit from polarimetric information in classification.
AB - This paper compares ALOS PALSAR fully polarimetric and dual-polarized data in the application area of land cover mapping. To assure versatile comparison of the data, different classification methods and different features of data are used. Two of the classification methods used are based on supervised classification and two on unsupervised classification. Polarimetric data are used in three ways: 1) as fully polarimetric data; 2) features calculated from fully polarimetric data; and 3) intensity data of selected channels. Combinations of six (water, field, sparse forest, dense forest, peat land, and urban areas), five, four, and three classes were used for classification. Fully polarimetric data gave better results (87.5%84.7% with three classes; open land areas, forest, and water) than intensity data only (83.6%78.6%), but the differences in the overall accuracies between the methods were not more than 7.6%. Kappa coefficients of agreement are moderate for all the classifications. Supervised classification can be expected to perform better than unsupervised classification, given that the training areas can be selected accurately. Dual polarization data were found to be an attractive alternative in cases where fully polarimetric data are not available or it is of low resolution. With intensities of selected polarimetric features, it was possible to obtain a high classification accuracy as with fully polarimetric data. This also opens possibilities for nonspecialist users to benefit from polarimetric information in classification.
KW - Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR)
KW - classification
KW - land cover
KW - polarimetric synthetic aperture radar
UR - http://www.scopus.com/inward/record.url?scp=77957005457&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2010.2048115
DO - 10.1109/TGRS.2010.2048115
M3 - Article
AN - SCOPUS:77957005457
VL - 48
SP - 3652
EP - 3662
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
SN - 0196-2892
IS - 10
M1 - 5475228
ER -