Planar Hypohamiltonian Graphs on 40 Vertices

Mohammadreza Jooyandeh, Brendan D. Mckay, Patric R J Östergård, Ville H. Pettersson, Carol T. Zamfirescu

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

20 Sitaatiot (Scopus)

Abstrakti

A graph is hypohamiltonian if it is not Hamiltonian, but the deletion of any single vertex gives a Hamiltonian graph. Until now, the smallest known planar hypohamiltonian graph had 42 vertices, a result due to Araya and Wiener. That result is here improved upon by 25 planar hypohamiltonian graphs of order 40, which are found through computer-aided generation of certain families of planar graphs with girth 4 and a fixed number of 4-faces. It is further shown that planar hypohamiltonian graphs exist for all orders greater than or equal to 42. If Hamiltonian cycles are replaced by Hamiltonian paths throughout the definition of hypohamiltonian graphs, we get the definition of hypotraceable graphs. It is shown that there is a planar hypotraceable graph of order 154 and of all orders greater than or equal to 156. We also show that the smallest planar hypohamiltonian graph of girth 5 has 45 vertices.

AlkuperäiskieliEnglanti
Sivut121-133
Sivumäärä13
JulkaisuJournal of Graph Theory
Vuosikerta84
Numero2
Varhainen verkossa julkaisun päivämäärä2016
DOI - pysyväislinkit
TilaJulkaistu - helmik. 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Planar Hypohamiltonian Graphs on 40 Vertices'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä