Physics-Informed Variational State-Space Gaussian Processes

Oliver Hamelijnck, Arno Solin, Theodoros Damoulas

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Differential equations are important mechanistic models that are integral to many scientific and engineering applications. With the abundance of available data there has been a growing interest in data-driven physics-informed models. Gaussian processes (GPs) are particularly suited to this task as they can model complex, non-linear phenomena whilst incorporating prior knowledge and quantifying uncertainty. Current approaches have found some success but are limited as they either achieve poor computational scalings or focus only on the temporal setting. This work addresses these issues by introducing a variational spatio-temporal state-space GP that handles linear and non-linear physical constraints while achieving efficient linear-in-time computation costs. We demonstrate our methods in a range of synthetic and real-world settings and outperform the current state-of-the-art in both predictive and computational performance.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 37 (NeurIPS 2024)
ToimittajatA. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang
KustantajaCurran Associates Inc.
ISBN (painettu)9798331314385
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Kanada
Kesto: 10 jouluk. 202415 jouluk. 2024
Konferenssinumero: 38
https://neurips.cc/Conferences/2024

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaCurran Associates, Inc.
Vuosikerta37
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso10/12/202415/12/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Physics-Informed Variational State-Space Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä