Physics-guided metamodel for vertical bending-induced fatigue damage monitoring in container vessels

Xiao Lang, Mingyang Zhang*, Chi Zhang, Jonas W. Ringsberg, Wengang Mao

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

14 Lataukset (Pure)

Abstrakti

This study proposes a novel physics-guided metamodel to predict vertical bending-induced fatigue damage in a 2800TEU container vessel navigating the North Atlantic, based on data from the vessel's hull monitoring system. The metamodel combines two XGBoost-based base learners: a black-box model utilizing ship heave and pitch motion measurements, and a gray-box model using spectral moments from numerical analysis. Predictions from both models are refined through a meta learner Gaussian process regression to enhance accuracy. The metamodel was evaluated against black-box and gray-box models across various training data volumes. The proposed model adapts to varying data volumes, from months to over 2 years, effectively integrating the strengths of both base learners to provide reliable predictions in both seen and unseen scenarios. The model consistently demonstrated superior performance, enhancing fatigue damage accumulation accuracy by up to 35% over traditional machine learning methods. This advancement can aid the maritime industry in effectively monitoring ship fatigue and implementing predictive maintenance strategies, marking a significant step forward in applying data-driven techniques in shipping.

AlkuperäiskieliEnglanti
Artikkeli119223
Sivumäärä17
JulkaisuOcean Engineering
Vuosikerta312
DOI - pysyväislinkit
TilaJulkaistu - 15 marrask. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Physics-guided metamodel for vertical bending-induced fatigue damage monitoring in container vessels'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä