Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers

Sebastian Schlecht, Julian Parker, Maximilian Schäfer, Rudolf Rabenstein

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

57 Lataukset (Pure)

Abstrakti

Discrete-time modeling of acoustic, mechanical and electrical systems is a prominent topic in the musical signal processing literature. Such models are mostly derived by discretizing a mathematical model, given in terms of ordinary or partial differential equations, using established techniques. Recent work has applied the techniques of machine-learning to construct such models automatically from data for the case of systems which have lumped states described by scalar values, such as electrical circuits. In this work, we examine how similar techniques are able to construct models of systems which have spatially distributed rather than lumped states. We describe several novel recurrent neural network structures, and show how they can be thought of as an extension of modal techniques. As a proof of concept, we generate synthetic data for three physical systems and show that the proposed network structures can be trained with this data to reproduce the behavior of these systems.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)
KustantajaDAFx
Sivut138-145
Sivumäärä8
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Digital Audio Effects - University of Music and Performing Arts Vienna, Vienna, Itävalta
Kesto: 7 syysk. 20229 syysk. 2022
Konferenssinumero: 25
https://dafx2020.mdw.ac.at/DAFx20in22/
https://dafx2020.mdw.ac.at/DAFx20in22/index.html

Julkaisusarja

NimiProceedings of the International Conference on Digital Audio Effects
ISSN (painettu)2414-6382
ISSN (elektroninen)2413-6689

Conference

ConferenceInternational Conference on Digital Audio Effects
LyhennettäDAFx
Maa/AlueItävalta
KaupunkiVienna
Ajanjakso07/09/202209/09/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä