Phase-field crystal model for heterostructures

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • MIT, Massachusetts Institute of Technology (MIT), Dept Math
  • Bohai Univ, Bohai University, Sch Math & Phys
  • Oakland Univ, Oakland University, Dept Phys
  • Loughborough University

Kuvaus

Atomically thin two-dimensional heterostructures are a promising, novel class of materials with ground-breaking properties. The possibility of choosing many constituent components and their proportions allows optimization of these materials to specific requirements. The wide adaptability comes with a cost of large parameter space making it hard to experimentally test all the possibilities. Instead, efficient computational modeling is needed. However, large range of relevant time and length scales related to physics of polycrystalline materials poses a challenge for computational studies. To this end, we present an efficient and flexible phase-field crystal model to describe the atomic configurations of multiple atomic species and phases coexisting in the same physical domain. We extensively benchmark the model for two-dimensional binary systems in terms of their elastic properties and phase boundary configurations and their energetics. As a concrete example, we demonstrate modeling lateral heterostructures of graphene and hexagonal boron nitride. We consider both idealized bicrystals and large-scale systems with random phase distributions. We find consistent relative elastic moduli and lattice constants, as well as realistic continuous interfaces and faceted crystal shapes. Zigzag-oriented interfaces are observed to display the lowest formation energy.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli165412
Sivut1-15
Sivumäärä15
JulkaisuPhysical Review B
Vuosikerta100
Numero16
TilaJulkaistu - 16 lokakuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 38461595