Perceptual Loss Function for Neural Modelling of Audio Systems

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

13 Lataukset (Pure)

Abstrakti

This work investigates alternate pre-emphasis filters used as part of the loss function during neural network training for nonlinear audio processing. In our previous work, the error-to-signal ratio loss function was used during network training, with a first-order highpass pre-emphasis filter applied to both the target signal and neural network output. This work considers more perceptually relevant pre-emphasis filters, which include lowpass filtering at high frequencies. We conducted listening tests to determine whether they offer an improvement to the quality of a neural network model of a guitar tube amplifier. Listening test results indicate that the use of an A-weighting pre-emphasis filter offers the best improvement among the tested filters. The proposed perceptual loss function improves the sound quality of neural network models in audio processing without affecting the computational cost.
AlkuperäiskieliEnglanti
OtsikkoICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
KustantajaIEEE
Sivut251-255
Sivumäärä5
ISBN (elektroninen)978-1-5090-6631-5
ISBN (painettu)978-1-5090-6631-5, 978-1-5090-6632-2
DOI - pysyväislinkit
TilaJulkaistu - 4 toukokuuta 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Acoustics, Speech and Signal Processing - Barcelona, Espanja
Kesto: 4 toukokuuta 20208 toukokuuta 2020
Konferenssinumero: 45

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech and Signal Processing
LyhennettäICASSP
MaaEspanja
KaupunkiBarcelona
Ajanjakso04/05/202008/05/2020

Sormenjälki Sukella tutkimusaiheisiin 'Perceptual Loss Function for Neural Modelling of Audio Systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä