PatchUp : A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks

Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma, Sarath Chandar

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

19 Sitaatiot (Scopus)

Abstrakti

Large capacity deep learning models are often prone to a high generalization gap when trained with a limited amount of labeled training data. A recent class of methods to address this problem uses various ways to construct a new training sample by mixing a pair (or more) of training samples. We propose PatchUp, a hidden state block-level regularization technique for Convolutional Neural Networks (CNNs), that is applied on selected contiguous blocks of feature maps from a random pair of samples. Our approach improves the robustness of CNN models against the manifold intrusion problem that may occur in other state-of-the-art mixing approaches. Moreover, since we are mixing the contiguous block of features in the hidden space, which has more dimensions than the input space, we obtain more diverse samples for training towards different dimensions. Our experiments on CIFAR10/100, SVHN, Tiny-ImageNet, and ImageNet using ResNet architectures including PreActResnet18/34, WRN-28-10, ResNet101/152 models show that PatchUp improves upon, or equals, the performance of current state-of-the-art regularizers for CNNs. We also show that PatchUp can provide a better generalization to deformed samples and is more robust against adversarial attacks.

AlkuperäiskieliEnglanti
OtsikkoAAAI-22 Technical Tracks 1
KustantajaAAAI Press
Sivut589-597
Sivumäärä9
ISBN (elektroninen)978-1-57735-876-3
TilaJulkaistu - 30 kesäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAAAI Conference on Artificial Intelligence - virtual conference, Virtual, Online
Kesto: 22 helmik. 20221 maalisk. 2022
Konferenssinumero: 36
https://aaai.org/Conferences/AAAI-22/

Julkaisusarja

NimiProceedings of the AAAI Conference on Artificial Intelligence
Vuosikerta36

Conference

ConferenceAAAI Conference on Artificial Intelligence
LyhennettäAAAI
KaupunkiVirtual, Online
Ajanjakso22/02/202201/03/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'PatchUp : A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä