Partitioned Update Binomial Gaussian Mixture Filter

Matti Raitoharju, Angel F. Garcia-Fernandez, Simo Sarkka

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Gaussian Mixture Filters (GMFs) are approximations of the Bayesian filter for nonlinear estimation. A GMF consists of a weighted sum of Gaussian components. Each component is propagated and updated with a Kalman-type filter. When the nonlinearity is small in the update step, the required number of components to yield an accurate approximation is small and vice versa. In this paper, we propose multiple improvements to GMF that reduce the computational load and increase the estimation accuracy. The new filter processes measurements so that the least nonlinear measurements will be applied first, this reduces the need for new components. After splitting a Gaussian component, the update is done so that the measurement function is evaluated only in nonlinear directions, which reduces computational load. Finally we propose a new faster algorithm for reducing the number of components after measurements are applied. Results show that the proposed improvements make the algorithm faster and improve the estimation accuracy with respect to a GMF that is used as a basis for development.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 22nd International Conference on Information Fusion, FUSION 2019
KustantajaIEEE
Sivumäärä8
ISBN (elektroninen)9780996452786
TilaJulkaistu - 1 heinäk. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Information Fusion - Ottawa, Kanada
Kesto: 2 heinäk. 20195 heinäk. 2019
Konferenssinumero: 22

Conference

ConferenceInternational Conference on Information Fusion
LyhennettäFUSION
Maa/AlueKanada
KaupunkiOttawa
Ajanjakso02/07/201905/07/2019

Sormenjälki

Sukella tutkimusaiheisiin 'Partitioned Update Binomial Gaussian Mixture Filter'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä