Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice

Joseph F. Hair, Christian M. Ringle*, Siegfried P. Gudergan, Andreas Fischer, Christian Nitzl, Con Menictas

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

292 Sitaatiot (Scopus)

Abstrakti

Commonly used discrete choice model analyses (e.g., probit, logit and multinomial logit models) draw on the estimation of importance weights that apply to different attribute levels. But directly estimating the importance weights of the attribute as a whole, rather than of distinct attribute levels, is challenging. This article substantiates the usefulness of partial least squares structural equation modeling (PLS-SEM) for the analysis of stated preference data generated through choice experiments in discrete choice modeling. This ability of PLS-SEM to directly estimate the importance weights for attributes as a whole, rather than for the attribute’s levels, and to compute determinant respondent-specific latent variable scores applicable to attributes, can more effectively model and distinguish between rational (i.e., optimizing) decisions and pragmatic (i.e., heuristic) ones, when parameter estimations for attributes as a whole are crucial to understanding choice decisions.

AlkuperäiskieliEnglanti
Sivut115-142
Sivumäärä28
JulkaisuBusiness Research
Vuosikerta12
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä