Projekteja vuodessa
Abstrakti
Importance weighting is a general way to adjust Monte Carlo integration to account for draws from the wrong distribution, but the resulting estimate can be highly variable when the importance ratios have a heavy right tail. This routinely occurs when there are aspects of the target distribution that are not well captured by the approximating distribution, in which case more stable estimates can be obtained by modifying extreme importance ratios. We present a new method for stabilizing importance weights using a generalized Pareto distribution fit to the upper tail of the distribution of the simulated importance ratios. The method, which empirically performs better than existing methods for stabilizing importance sampling estimates, includes stabilized effective sample size estimates, Monte Carlo error estimates, and convergence diagnostics. The presented Pareto ˆk finite sample convergence rate diagnostic is useful for any Monte Carlo estimator.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 72 |
Sivumäärä | 58 |
Julkaisu | Journal of Machine Learning Research |
Vuosikerta | 25 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Pareto Smoothed Importance Sampling'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
-: Finnish Center for Artificial Intelligence
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
Luotettava automatisoitu bayesilainen koneoppiminen
Vehtari, A., Ghosh, K., Dhaka, A., Pavone, F., Koistinen, O. & Magnusson, M.
01/01/2018 → 31/12/2019
Projekti: Academy of Finland: Other research funding