Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation

Antti Kangasrääsiö, Jussi P.P. Jokinen*, Antti Oulasvirta, Andrew Howes, Samuel Kaski

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)
121 Lataukset (Pure)

Abstrakti

This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional parameter fitting methods. Weak methodology may lead to premature rejection of valid models or to acceptance of models that might otherwise be falsified. Mathematically robust fitting methods are, therefore, essential to the progress of computational modeling in cognitive science. In this article, we investigate the capability and role of modern fitting methods—including Bayesian optimization and approximate Bayesian computation—and contrast them to some more commonly used methods: grid search and Nelder–Mead optimization. Our investigation consists of a reanalysis of the fitting of two previous computational models: an Adaptive Control of Thought—Rational model of skill acquisition and a computational rationality model of visual search. The results contrast the efficiency and informativeness of the methods. A key advantage of the Bayesian methods is the ability to estimate the uncertainty of fitted parameter values. We conclude that approximate Bayesian computation is (a) efficient, (b) informative, and (c) offers a path to reproducible results.

AlkuperäiskieliEnglanti
Artikkeli12738
Sivumäärä40
JulkaisuCOGNITIVE SCIENCE
Vuosikerta43
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäkuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    Interaktiivinen koneoppiminen useista biodatalähteistä

    Jälkö, J., Hegde, P., Kaski, S., Shen, Z., Siren, J., Gadd, C., Jain, A., Hämäläinen, A., Trinh, Q. & Tran, A.

    01/01/201931/08/2021

    Projekti: Academy of Finland: Other research funding

    Tunnearvioteorian laskennallinen mallinnus ihmisen ja tietokoneen vuorovaikutuksessa

    Jokinen, J.

    01/09/201725/09/2020

    Projekti: Academy of Finland: Other research funding

    Helppotulkintainen tekoäly

    Kaski, S., Daee, P. & Çelikok, M. M.

    01/01/201831/12/2019

    Projekti: Academy of Finland: Other research funding

    Laitteet

    Science-IT

    Mikko Hakala (Manager)

    Perustieteiden korkeakoulu

    Laitteistot/tilat: Facility

  • Siteeraa tätä