Para-Hermitian Rational Matrices

Froilán M. Dopico, Vanni Noferini, Maria C. Quintana, Paul van Dooren

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

In this paper, we study para-Hermitian rational matrices and the associated structured rational eigenvalue problem (REP). Para-Hermitian rational matrices are Square rational matrices that are Hermitian for all z on the unit circle that are not poles. REPs are often solved via linearization, that is, using matrix pencils associated to the corresponding rational matrix that preserve the spectral structure. Yet, nonconstant polynomial matrices cannot be para-Hermitian. Therefore, given a para-Hermitian rational matrix R(z), we instead construct a *-palindromic linearization for (1 -\- z)R(z), whose eigenvalues that are not on the unit circle preserve the symmetries of the zeros and poles of R(z). This task is achieved via Möbius transformations. We also give a constructive method that is based on an additive decomposition into the stable and antistable parts of R(z). Analogous results are presented for para-skew-Hermitian rational matrices, i.e., rational matrices that are skew-Hermitian upon evaluation on those points of the unit circle that are not poles.

AlkuperäiskieliEnglanti
Sivut2339-2359
Sivumäärä21
JulkaisuSIAM Journal on Matrix Analysis and Applications
Vuosikerta45
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Para-Hermitian Rational Matrices'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä