Out-of-distribution- and location-aware PointNets for real-time 3D road user detection without a GPU

Alvari Seppänen*, Eerik Alamikkotervo, Risto Ojala, Giacomo Dario, Kari Tammi

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

46 Lataukset (Pure)

Abstrakti

3D road user detection is an essential task for autonomous vehicles and mobile robots, and it plays a key role, for instance, in obstacle avoidance and route planning tasks. Existing solutions for detection require expensive GPU units to run in real-time. This paper presents a light algorithm that runs in real-time without a GPU. The algorithm combines a classical point cloud proposal generator approach with a modern deep learning technique to achieve a small computational requirement and comparable accuracy to the state-of-the-art. Typical downsides of this approach, such as many out-of-distribution proposals and loss of location information, are examined, and solutions are proposed. We have evaluated the performance of the method with the KITTI dataset and with our own annotated dataset collected with a compact mobile robot platform equipped with a low-resolution LiDAR (16-channel). Our approach reaches a real-time inference on a standard CPU, unlike other solutions in the literature. Furthermore, we achieve superior speed on a GPU, which indicates that our method has a high degree of parallelism. Our method enables low-cost mobile robots to detect road users in real-time.

AlkuperäiskieliEnglanti
Artikkeli2
Sivumäärä19
JulkaisuJournal of Big Data
Vuosikerta11
Numero1
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Out-of-distribution- and location-aware PointNets for real-time 3D road user detection without a GPU'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä