Optimizing Workover Rig Fleet Sizing and Scheduling Using Deterministic and Stochastic Programming Models

Miguel Pérez, Fabricio Oliveira, Silvio Hamacher

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

12 Sitaatiot (Scopus)
97 Lataukset (Pure)

Abstrakti

We present deterministic and stochastic programming models for the workover rig problem, one of the most challenging problems in the oil industry. In the deterministic approach, an integer linear programming model is used to determine the rig fleet size and schedule needed to service wells while maximizing oil production and minimizing rig usage cost. The stochastic approach is an extension of the deterministic method and relies on a two-stage stochastic programming model to define the optimal rig fleet size considering uncertainty in the intervention time. In this approach, different scenario-generation methods are compared. Several experiments were performed using instances based on real-world problems. The results suggest that the proposed methodology can be used to solve large instances and produces quality solutions in computationally reasonable times.
AlkuperäiskieliEnglanti
Sivut7544–7554
JulkaisuIndustrial and Engineering Chemistry Research
Vuosikerta57
Numero22
DOI - pysyväislinkit
TilaJulkaistu - 6 kesäk. 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Optimizing Workover Rig Fleet Sizing and Scheduling Using Deterministic and Stochastic Programming Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä