Optimizing tiny colorless feedback delay networks

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

15 Lataukset (Pure)

Abstrakti

A common bane of artificial reverberation algorithms is spectral coloration in the synthesized sound, typically manifesting as metallic ringing, leading to a degradation in the perceived sound quality. In delay network methods, coloration is more pronounced when fewer delay lines are used. This paper presents an optimization framework in which a tiny differentiable feedback delay network, with as few as four delay lines, is used to learn a set of parameters to iteratively reduce coloration. The parameters under optimization include the feedback matrix, as well as the input and output gains. The optimization objective is twofold: to maximize spectral flatness through a spectral loss while maintaining temporal density by penalizing sparseness in the parameter values. A favorable narrow distribution of modal excitation is achieved while maintaining the desired impulse response density. In a subjective assessment, the new method proves effective in reducing perceptual coloration of late reverberation. Compared to the author’s previous work, which serves as the baseline and utilizes a sparsity loss in the time domain, the proposed method achieves computational savings while maintaining performance. The effectiveness of this work is demonstrated through two application scenarios where smooth-sounding synthetic room impulse responses are obtained via the introduction of attenuation filters and an optimizable scattering feedback matrix.

AlkuperäiskieliEnglanti
Artikkeli13
Sivumäärä15
JulkaisuEurasip Journal on Audio, Speech, and Music Processing
Vuosikerta2025
Numero1
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Optimizing tiny colorless feedback delay networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä