TY - JOUR
T1 - Optimizing postprandial glucose prediction through integration of diet and exercise : Leveraging transfer learning with imbalanced patient data
AU - Hotta, Shinji
AU - Kytö, Mikko
AU - Koivusalo, Saila
AU - Heinonen, Seppo
AU - Marttinen, Pekka
N1 - Publisher Copyright: © 2024 Public Library of Science. All rights reserved.
PY - 2024/8
Y1 - 2024/8
N2 - Background In recent years, numerous methods have been introduced to predict glucose levels using machine-learning techniques on patients’ daily behavioral and continuous glucose data. Nevertheless, a definitive consensus remains elusive regarding modeling the combined effects of diet and exercise for optimal glucose prediction. A notable challenge is the propensity for observational patient datasets from uncontrolled environments to overfit due to skewed feature distributions of target behaviors; for instance, diabetic patients seldom engage in high-intensity exercise post-meal. Methods In this study, we introduce a unique application of Bayesian transfer learning for postprandial glucose prediction using randomized controlled trial (RCT) data. The data comprises a time series of three key variables: continuous glucose levels, exercise expenditure, and carbohydrate intake. For building the optimal model to predict postprandial glucose levels we initially gathered balanced training data from RCTs on healthy participants by randomizing behavioral conditions. Subsequently, we pretrained the model’s parameter distribution using RCT data from the healthy cohort. This pretrained distribution was then adjusted, transferred, and utilized to determine the model parameters for each patient. Results The efficacy of the proposed method was appraised using data from 68 gestational diabetes mellitus (GDM) patients in uncontrolled settings. The evaluation underscored the enhanced performance attained through our method. Furthermore, when modeling the joint impact of diet and exercise, the synergetic model proved more precise than its additive counterpart. Conclusion An innovative application of the transfer-learning utilizing randomized controlled trial data can improve the challenging modeling task of postprandial glucose prediction for GDM patients, integrating both dietary and exercise behaviors. For more accurate prediction, future research should focus on incorporating the long-term effects of exercise and other glycemic-related factors such as stress, sleep.
AB - Background In recent years, numerous methods have been introduced to predict glucose levels using machine-learning techniques on patients’ daily behavioral and continuous glucose data. Nevertheless, a definitive consensus remains elusive regarding modeling the combined effects of diet and exercise for optimal glucose prediction. A notable challenge is the propensity for observational patient datasets from uncontrolled environments to overfit due to skewed feature distributions of target behaviors; for instance, diabetic patients seldom engage in high-intensity exercise post-meal. Methods In this study, we introduce a unique application of Bayesian transfer learning for postprandial glucose prediction using randomized controlled trial (RCT) data. The data comprises a time series of three key variables: continuous glucose levels, exercise expenditure, and carbohydrate intake. For building the optimal model to predict postprandial glucose levels we initially gathered balanced training data from RCTs on healthy participants by randomizing behavioral conditions. Subsequently, we pretrained the model’s parameter distribution using RCT data from the healthy cohort. This pretrained distribution was then adjusted, transferred, and utilized to determine the model parameters for each patient. Results The efficacy of the proposed method was appraised using data from 68 gestational diabetes mellitus (GDM) patients in uncontrolled settings. The evaluation underscored the enhanced performance attained through our method. Furthermore, when modeling the joint impact of diet and exercise, the synergetic model proved more precise than its additive counterpart. Conclusion An innovative application of the transfer-learning utilizing randomized controlled trial data can improve the challenging modeling task of postprandial glucose prediction for GDM patients, integrating both dietary and exercise behaviors. For more accurate prediction, future research should focus on incorporating the long-term effects of exercise and other glycemic-related factors such as stress, sleep.
UR - http://www.scopus.com/inward/record.url?scp=85200165974&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0298506
DO - 10.1371/journal.pone.0298506
M3 - Article
C2 - 39088422
AN - SCOPUS:85200165974
SN - 1932-6203
VL - 19
SP - 1
EP - 20
JO - PloS one
JF - PloS one
IS - 8 August
M1 - e0298506
ER -