Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials

Tutkimustuotos: Lehtiartikkelivertaisarvioitu




We explore different ways to simplify the evaluation of the smooth overlap of atomic positions (SOAP) many-body atomic descriptor [Bartok et al., Phys. Rev. B 87, 184115 (2013).]. Our aim is to improve the computational efficiency of SOAP-based similarity kernel construction. While these improved atomic descriptors can be used for general characterization and interpolation of atomic properties, their main target application is accelerated evaluation of machine-learning-based interatomic potentials within the Gaussian approximation potential (GAP) framework [Bartok et al., Phys. Rev. Lett. 104, 136403 (2010)]. We achieve this objective by expressing the atomic densities in an approximate separable form, which decouples the radial and angular channels. We then express the elements of the SOAP descriptor (i.e., the expansion coefficients for the atomic densities) in analytical form given a particular choice of radial basis set. Finally, we derive recursion formulas for the expansion coefficients. This new SOAP-based descriptor allows for tenfold speedups compared to previous implementations, while improving the stability of the radial expansion for distant atomic neighbors, without degradation of the interpolation power of GAP models.


JulkaisuPhysical Review B
TilaJulkaistu - 30 heinäkuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 36064943