Optimizing Feature Selection for Unbalanced Metabolomics Data with A Background Factor : A Comparative Study in Parkinson's Disease

Yinjia Zhang*, Wilhelmiina Hämäläinen, Paavo Reinikka, Sanna Kaisa Herukka, Ville Leinonen, Marko Lehtonen, Šárka Lehtonen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

Exploring associations between molecular features and categorical factors, like disease status, is a crucial task in metabolomics data analysis, demanding exceptional rigor. However, data imbalance and crossed factorial design complicate the selection of appropriate analysis settings. This paper presents a comparative study of candidate analysis settings for unbalanced metabolomics data, focusing on Parkinson's disease with gender as a background factor. The study evaluates two statistical test methods, pairwise t-tests and 2-way ANOVA, combined with two multiple hypothesis correction strategies: global correction and two-stage correction. Additionally, an unconditional analysis setting is examined, which can be easily misapplied due to its disregard for data imbalance and factor interactions. We profile the characteristics of each setting through experiments on real-world datasets from human samples and provide practical guidance for selecting appropriate settings to enhance the reliability of metabolomics studies.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
ToimittajatMario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
KustantajaIEEE
Sivut5884-5891
Sivumäärä8
ISBN (elektroninen)979-8-3503-8622-6
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Bioinformatics and Biomedicine - Lisbon, Portugali
Kesto: 3 jouluk. 20246 jouluk. 2024

Julkaisusarja

NimiProceedings (IEEE international conference on bioinformatics and biomedicine)
ISSN (elektroninen)2156-1133

Conference

ConferenceIEEE International Conference on Bioinformatics and Biomedicine
LyhennettäBIBM
Maa/AluePortugali
KaupunkiLisbon
Ajanjakso03/12/202406/12/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Optimizing Feature Selection for Unbalanced Metabolomics Data with A Background Factor : A Comparative Study in Parkinson's Disease'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä