Optimization of multi-plant capacitated lot-sizing problems in an integrated supply chain network using calibrated metaheuristic algorithms

Maryam Mohammadi, Siti Nurmaya Musa, Mohd Bin Omar

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

In this paper, a mathematical model for a multi-item multi-period capacitated lot-sizing problem in an integrated supply chain network composed of multiple suppliers, plants and distribution centers is developed. The combinations of several functions such as purchasing, production, storage, backordering and transportation are considered. The objective is to simultaneously determine the optimal raw material order quantity, production and inventory levels, and the transportation amount, so that the demand can be satisfied with the lowest possible cost. Transfer decisions between plants are made when demand at a plant can be fulfilled by other production sites to cope with the under-capacity and stock-out problems of that plant. Since the proposed model is NP-hard, a genetic algorithm is used to solve the model. To validate the results, particle swarm optimization and imperialist competitive algorithm are applied to solve the model as well. The results show that genetic algorithm offers better solution compared to other algorithms.
AlkuperäiskieliEnglanti
Artikkeli39(3)
Sivut325-363
Sivumäärä39
JulkaisuInternational Journal of Operational Research
Vuosikerta39
Numero3
TilaJulkaistu - toukokuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Optimization of multi-plant capacitated lot-sizing problems in an integrated supply chain network using calibrated metaheuristic algorithms'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä