Optimization-based Urban Network Traffic Management with Mixed Autonomy Incorporating Dynamic Saturation Rates

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientificvertaisarvioitu

14 Lataukset (Pure)

Abstrakti

This work introduces a novel optimization-based control framework for managing traffic flow in a network with mixed autonomy, where both Connected and Automated Vehicles (CAVs) and Human-Driven Vehicles coexist. The proposed model extends the store-and forward model by incorporating a dynamic saturation flow rate, which considers the autonomy level of queues. The problem is formulated as a non-convex Quadratic Program (QP), which accounts for the dynamic aspects of the traffic network in terms of queue lengths, spillback, green time allocation, routing of CAVs, and dynamic saturation flow rate. To solve the nonconvex QP problem, we employ a computationally efficient heuristic algorithm, which treats the dynamic saturation flow rate as a parameter outside the optimization framework, converting the non-convex problem into a series of convex subproblems. Numerical results on a grid network demonstrate the performance of the proposed methodology.
AlkuperäiskieliEnglanti
TilaJulkaistu - 6 syysk. 2024
OKM-julkaisutyyppiEi sovellu
TapahtumaSymposium on Management of Future Motorway and Urban Traffic Systems - Heraklion, Crete, Kreikka
Kesto: 4 syysk. 20246 syysk. 2024
Konferenssinumero: 5

Conference

ConferenceSymposium on Management of Future Motorway and Urban Traffic Systems
LyhennettäMFTS
Maa/AlueKreikka
KaupunkiHeraklion, Crete
Ajanjakso04/09/202406/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Optimization-based Urban Network Traffic Management with Mixed Autonomy Incorporating Dynamic Saturation Rates'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä