Projekteja vuodessa
Abstrakti
The paper considers the problem of estimating the covariance matrices of multiple classes
in a low sample support condition, where the data dimensionality is
comparable to, or larger than, the sample sizes of the available data
sets. In such conditions' a common approach is to shrink the class sample covariance matrices (SCMs) towards the pooled SCM. The success of this approach hinges upon the ability to choose the optimal regularization parameter. Typically, a common regularization level is shared among the classes and determined via a procedure based on cross-validation. We use class-specific regularization levels since this enables the derivation of the optimal regularization parameter for each class in terms of the minimum mean squared error (MMSE). The optimal parameters depend on the true unknown class
population covariances. Consistent estimators of the parameters can,
however, be easily constructed under the assumption that the class
populations follow (unspecified) elliptically symmetric distributions.
We demonstrate the performance of the proposed method via a simulation
study as well as via an application to discriminant analysis using both
synthetic and real data sets.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Kustantaja | IEEE |
Sivut | 4224-4228 |
Sivumäärä | 5 |
Vuosikerta | 2018-April |
ISBN (elektroninen) | 978-1-5386-4658-8 |
ISBN (painettu) | 978-1-5386-4659-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 10 syysk. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Acoustics, Speech, and Signal Processing - Calgary, Kanada Kesto: 15 huhtik. 2018 → 20 huhtik. 2018 https://2018.ieeeicassp.org/ |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
ISSN (elektroninen) | 2379-190X |
Conference
Conference | IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Lyhennettä | ICASSP |
Maa/Alue | Kanada |
Kaupunki | Calgary |
Ajanjakso | 15/04/2018 → 20/04/2018 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Optimal Pooling of Covariance Matrix Estimates Across Multiple Classes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Robusteja tilastollisia menetelmiä hyvin moniulotteiselle datalle
Ollila, E. (Vastuullinen tutkija), Raninen, E. (Projektin jäsen), Basiri, S. (Projektin jäsen), Tabassum, M. N. (Projektin jäsen) & Mian, A. (Projektin jäsen)
01/09/2016 → 31/12/2020
Projekti: Academy of Finland: Other research funding