Optimal Pooling of Covariance Matrix Estimates Across Multiple Classes

Elias Raninen, Esa Ollila

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)
262 Lataukset (Pure)

Abstrakti

The paper considers the problem of estimating the covariance matrices of multiple classes in a low sample support condition, where the data dimensionality is comparable to, or larger than, the sample sizes of the available data sets. In such conditions' a common approach is to shrink the class sample covariance matrices (SCMs) towards the pooled SCM. The success of this approach hinges upon the ability to choose the optimal regularization parameter. Typically, a common regularization level is shared among the classes and determined via a procedure based on cross-validation. We use class-specific regularization levels since this enables the derivation of the optimal regularization parameter for each class in terms of the minimum mean squared error (MMSE). The optimal parameters depend on the true unknown class population covariances. Consistent estimators of the parameters can, however, be easily constructed under the assumption that the class populations follow (unspecified) elliptically symmetric distributions. We demonstrate the performance of the proposed method via a simulation study as well as via an application to discriminant analysis using both synthetic and real data sets.

AlkuperäiskieliEnglanti
Otsikko2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
KustantajaIEEE
Sivut4224-4228
Sivumäärä5
Vuosikerta2018-April
ISBN (elektroninen)978-1-5386-4658-8
ISBN (painettu)978-1-5386-4659-5
DOI - pysyväislinkit
TilaJulkaistu - 10 syysk. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Calgary, Kanada
Kesto: 15 huhtik. 201820 huhtik. 2018
https://2018.ieeeicassp.org/

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueKanada
KaupunkiCalgary
Ajanjakso15/04/201820/04/2018
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Optimal Pooling of Covariance Matrix Estimates Across Multiple Classes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Robusteja tilastollisia menetelmiä hyvin moniulotteiselle datalle

    Ollila, E. (Vastuullinen tutkija), Raninen, E. (Projektin jäsen), Basiri, S. (Projektin jäsen), Tabassum, M. N. (Projektin jäsen) & Mian, A. (Projektin jäsen)

    01/09/201631/12/2020

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä