TY - JOUR
T1 - Operational Machine Learning Post-Processing of Short-Range Temperature, Humidity, Wind Speed and Gust Forecasts
AU - Hieta, Leila
AU - Partio, Mikko
PY - 2025/8/20
Y1 - 2025/8/20
N2 - Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).
AB - Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).
KW - XGBoost
KW - bias correction
KW - nowcasting
KW - operational forecasting
UR - https://www.scopus.com/pages/publications/105013635677
U2 - 10.1002/met.70074
DO - 10.1002/met.70074
M3 - Article
SN - 1350-4827
VL - 32
JO - Meteorological Applications
JF - Meteorological Applications
IS - 4
M1 - e70074
ER -