Abstrakti

The problem of model selection with a limited number of experimental trials has received considerable attention in cognitive science, where the role of experiments is to discriminate between theories expressed as computational models. Research on this subject has mostly been restricted to optimal experiment design with analytically tractable models. However, cognitive models of increasing complexity with intractable likelihoods are becoming more commonplace. In this paper, we propose BOSMOS, an approach to experimental design that can select between computational models without tractable likelihoods. It does so in a data-efficient manner by sequentially and adaptively generating informative experiments. In contrast to previous approaches, we introduce a novel simulator-based utility objective for design selection and a new approximation of the model likelihood for model selection. In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to two orders of magnitude less time than existing LFI alternatives for three cognitive science tasks: memory retention, sequential signal detection, and risky choice.

AlkuperäiskieliEnglanti
Sivut719-737
Sivumäärä19
JulkaisuComputational Brain and Behavior
Vuosikerta6
Numero4
Varhainen verkossa julkaisun päivämäärä21 syysk. 2023
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Online Simulator-Based Experimental Design for Cognitive Model Selection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä