Online learning neural network for adaptively weighted hybrid modeling

Shao Ming Yang, Ya Lin Wang*, Yong Fei Xue, Bei Sun, Bu Song Yang

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

The soft sensor models constructed based on historical data have poor generalization due to the characters of strong non-linearity and time-varying dynamics. Moving window and recursively sample updating online modeling methods can not achieve a balance between accuracy and training speed. Aiming at these problems, a novel online learning neural network (LNN) selects high-quality samples with just-in-time learning (JITL) for modeling. And the local samples could be further determined by principal component analysis (PCA). The LNN model shows better performance but poor stability. Weighted multiple sub models, the hybrid model improves accuracy by covering deficiencies. Additionally, the weights could be developed with mean square error (MSE) of each sub model. And the detailed simulation results verify the superiority of adaptive weighted hybrid model.

AlkuperäiskieliEnglanti
OtsikkoNeural Information Processing - 23rd International Conference, ICONIP 2016, Proceedings
KustantajaSpringer
Sivut233-240
Sivumäärä8
ISBN (painettu)9783319466712
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Neural Information Processing - Kyoto, Japani
Kesto: 16 lokak. 201621 lokak. 2016
Konferenssinumero: 23

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta9948 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Neural Information Processing
LyhennettäICONIP
Maa/AlueJapani
KaupunkiKyoto
Ajanjakso16/10/201621/10/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Online learning neural network for adaptively weighted hybrid modeling'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä