Abstrakti
The soft sensor models constructed based on historical data have poor generalization due to the characters of strong non-linearity and time-varying dynamics. Moving window and recursively sample updating online modeling methods can not achieve a balance between accuracy and training speed. Aiming at these problems, a novel online learning neural network (LNN) selects high-quality samples with just-in-time learning (JITL) for modeling. And the local samples could be further determined by principal component analysis (PCA). The LNN model shows better performance but poor stability. Weighted multiple sub models, the hybrid model improves accuracy by covering deficiencies. Additionally, the weights could be developed with mean square error (MSE) of each sub model. And the detailed simulation results verify the superiority of adaptive weighted hybrid model.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Neural Information Processing - 23rd International Conference, ICONIP 2016, Proceedings |
Kustantaja | Springer |
Sivut | 233-240 |
Sivumäärä | 8 |
ISBN (painettu) | 9783319466712 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Neural Information Processing - Kyoto, Japani Kesto: 16 lokak. 2016 → 21 lokak. 2016 Konferenssinumero: 23 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 9948 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Conference
Conference | International Conference on Neural Information Processing |
---|---|
Lyhennettä | ICONIP |
Maa/Alue | Japani |
Kaupunki | Kyoto |
Ajanjakso | 16/10/2016 → 21/10/2016 |