Online Detection of Shutdown Periods in Chemical Plants: A Case Study

Manuel Martin Salvador, Bogdan Gabrys, Indre Zliobaite

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    4 Sitaatiot (Scopus)
    154 Lataukset (Pure)

    Abstrakti

    In process industry, chemical processes are controlled and monitored by using readings from multiple physical sensors across the plants. Such physical sensors are also supplemented by soft sensors, i.e. adaptive predictive models, which are often used for computing hard-to-measure variables of the process. For soft sensors to work well and adapt to changing operating conditions they need to be provided with relevant data. As production plants are regularly stopped, data instances generated during shutdown periods have to be identified to avoid updating these predictive models with wrong data. We present a case study concerned with a large chemical plant operation over a 2 years period. The task is to robustly and accurately identify the shutdown periods even in case of multiple sensor failures. State-of-the-art methods were evaluated using the first half of the dataset for calibration purposes and the other half for measuring the performance. Results show that shutdowns (i.e. sudden changes) can be quickly detected in any case but the detection delay of startups (i.e. gradual changes) is directly related with the choice of a window size.
    AlkuperäiskieliEnglanti
    Sivut580-588
    JulkaisuPROCEDIA COMPUTER SCIENCE
    Vuosikerta35
    DOI - pysyväislinkit
    TilaJulkaistu - 2014
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu
    TapahtumaINTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS - Gdynia, Puola
    Kesto: 15 syyskuuta 201417 syyskuuta 2014
    Konferenssinumero: 18

    Sormenjälki Sukella tutkimusaiheisiin 'Online Detection of Shutdown Periods in Chemical Plants: A Case Study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä