On Using Distribution-Based Compositionality Assessment to Evaluate Compositional Generalisation in Machine Translation

Anssi Moisio, Mathias Creutz, Mikko Kurimo

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

32 Lataukset (Pure)

Abstrakti

Compositional generalisation (CG), in NLP and in machine learning more generally, has been assessed mostly using artificial datasets. It is important to develop benchmarks to assess CG also in real-world natural language tasks in order to understand the abilities and limitations of systems deployed in the wild. To this end, our GenBench Collaborative Benchmarking Task submission utilises the distribution-based compositionality assessment (DBCA) framework to split the Europarl translation corpus into a training and a test set in such a way that the test set requires compositional generalisation capacity. Specifically, the training and test sets have divergent distributions of dependency relations, testing NMT systems’ capability of translating dependencies that they have not been trained on. This is a fully-automated procedure to create natural language compositionality benchmarks, making it simple and inexpensive to apply it further to other datasets and languages. The code and data for the experiments is available at https://github.com/aalto-speech/dbca.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP
KustantajaAssociation for Computational Linguistics
Sivumäärä10
ISBN (elektroninen)979-8-89176-042-4
TilaJulkaistu - 6 jouluk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaGenBench: Workshop on generalisation (benchmarking) in NLP - Singapore, Singapore
Kesto: 6 jouluk. 20236 jouluk. 2023
Konferenssinumero: 1

Workshop

WorkshopGenBench: Workshop on generalisation (benchmarking) in NLP
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso06/12/202306/12/2023

Sormenjälki

Sukella tutkimusaiheisiin 'On Using Distribution-Based Compositionality Assessment to Evaluate Compositional Generalisation in Machine Translation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä