Abstrakti
Gaussian process quadrature is a promising alternative Bayesian approach to numerical integration, which offers attractive advantages over its well-known classical counterparts. We show how Gaussian process quadrature can naturally incorporate gradient information about the integrand. These results are applied for the design of transformation of means and covariances of Gaussian random variables. We theoretically analyze connections between our proposed moment transform and the linearization transform based on Taylor series. Numerical experiments on common sensor network nonlinearities show that adding gradient information improves the resulting estimates.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 |
Toimittajat | Francesco A.N. Palmieri, Aurelio Uncini, Kostas Diamantaras, Jan Larsen |
Kustantaja | IEEE |
Vuosikerta | 2016-November |
ISBN (elektroninen) | 9781509007462 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 8 marrask. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Machine Learning for Signal Processing - Salerno, Italia Kesto: 13 syysk. 2016 → 16 syysk. 2016 Konferenssinumero: 26 http://mlsp2016.conwiz.dk/home.htm |
Julkaisusarja
Nimi | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Kustantaja | IEEE COMPUTER SOCIETY PRESS |
ISSN (painettu) | 2161-0363 |
ISSN (elektroninen) | 2161-0371 |
Workshop
Workshop | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Lyhennettä | MLSP |
Maa/Alue | Italia |
Kaupunki | Salerno |
Ajanjakso | 13/09/2016 → 16/09/2016 |
www-osoite |