Abstrakti
This paper presents an algorithm to parallelise the Viterbi algorithm along the temporal dimension to compute the maximum a posteriori (MAP) trajectory estimate of a hidden Markov model. We reformulate the MAP estimation problem as an optimal control problem. The proposed algorithm uses a parallelisation algorithm developed for optimal control problems that first performs a backward value function pass and then a forward trajectory recovery pass. The parallel Viterbi algorithm then corresponds to a specialised backward optimal control problem with a forward value function pass and backward MAP-trajectory recovery pass. The algorithm is empirically tested by running numerical simulations on a multi-core central processing unit (CPU) and a graphics processing unit (GPU).
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings |
Kustantaja | European Signal Processing Conference (EUSIPCO) |
Sivut | 2018-2022 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-9-4645-9360-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 marrask. 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Helsinki, Suomi Kesto: 4 syysk. 2023 → 8 syysk. 2023 Konferenssinumero: 31 https://eusipco2023.org/ |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
ISSN (painettu) | 2219-5491 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Suomi |
Kaupunki | Helsinki |
Ajanjakso | 04/09/2023 → 08/09/2023 |
www-osoite |