Projekteja vuodessa
Abstrakti
A covering array CA(N; t, k, v) of strength t is an N × k array of symbols from an alphabet of size v such that in every N × t subarray, every t-tuple occurs in at least one row. A covering array is optimal if it has the smallest possible N for given t, k, and v, and uniform if every symbol occurs [N∕v] or [N∕v] times in every column. Before this paper, the only known optimal covering arrays for t = 2 were orthogonal arrays, covering arrays with v = 2 constructed from Sperner's Theorem and the Erdős-Ko-Rado Theorem, and 11 other parameter sets with v > 2 and N > v2. In all these cases, there is a uniform covering array with the optimal size. It has been conjectured that there exists a uniform covering array of optimal size for all parameters. In this paper, a new lower bound as well as structural constraints for small uniform strength-2 covering arrays is given. Moreover, covering arrays with small parameters are studied computationally. The size of an optimal strength-2 covering array with v > 2 and N > v2 is now known for 21 parameter sets. Our constructive results continue to support the conjecture.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 5-24 |
Sivumäärä | 20 |
Julkaisu | Journal of Combinatorial Designs |
Vuosikerta | 28 |
Numero | 1 |
Varhainen verkossa julkaisun päivämäärä | 1 tammik. 2019 |
DOI - pysyväislinkit | |
Tila | Julkaistu - tammik. 2020 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'On the structure of small strength-2 covering arrays'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Tietoaineistot
-
Classification of small strength-2 covering arrays
Kokkala, J. (Creator), Meagher, K. (Creator), Reza, N. (Creator), Nurmela, K. (Creator), Östergård, P. (Creator) & Stevens, B. (Creator), 31 lokak. 2018
DOI - pysyväislinkki: 10.5281/zenodo.1476059
Tietoaineisto: Dataset
Projektit
- 1 Päättynyt
-
Konstruktion och klassificering av diskreta matematiska strukturer
Kokkala, J., Laaksonen, A., Östergård, P., Szollosi, F., Pöllänen, A., Heinlein, D. & Ganzhinov, M.
01/09/2015 → 31/08/2019
Projekti: Academy of Finland: Other research funding