Abstrakti
We consider the problem of information aggregation in federated decision making, where a group of agents collaborate to infer the underlying state of nature without sharing their private data with the central processor or each other. We analyze the non-Bayesian social learning strategy in which agents incorporate their individual observations into their opinions (i.e., soft-decisions) with Bayes rule, and the central processor aggregates these opinions by arithmetic or geometric averaging. Building on our previous work, we establish that both pooling strategies result in asymptotic normality characterization of the system, which, for instance, can be utilized to derive approximate expressions for the error probability. We verify the theoretical findings with simulations and compare both strategies.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 22nd IEEE Statistical Signal Processing Workshop, SSP 2023 |
Kustantaja | IEEE |
Sivut | 270-274 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-1-6654-5245-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Statistical Signal Processing Workshop - Hanoi, Vietnam Kesto: 2 heinäk. 2023 → 5 heinäk. 2023 Konferenssinumero: 22 |
Julkaisusarja
Nimi | IEEE Statistical Signal Processing Workshop |
---|---|
ISSN (elektroninen) | 2693-3551 |
Conference
Conference | IEEE Statistical Signal Processing Workshop |
---|---|
Lyhennettä | SSP |
Maa/Alue | Vietnam |
Kaupunki | Hanoi |
Ajanjakso | 02/07/2023 → 05/07/2023 |