On the Contribution of Saliency in Visual Tracking

Iman Alikhani, Hamed Rezazadegan Tavakoli, Esa Rahtu, Jorma Laaksonen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Visual target tracking is a long-standing problem in the domain of computer vision. There are numerous methods proposed over several years. A recent trend in visual tracking has been target representation and tracking using saliency models inspired by the attentive mechanism of the human. Motivated to investigate the usefulness of such target representation scheme, we study several target representation techniques for mean-shift tracking framework, where the feature space can include color, texture, saliency, and gradient orientation information. In particular, we study the usefulness of the joint distribution of color-texture, color-saliency, and color-orientation in comparison with the color distribution. The performance is evaluated using the visual object tracking (VOT) 2013 which provides a systematic mechanism and a database for the assessment of tracking algorithms. We summarize the results in terms of accuracy & robustness; and discuss the usefulness of saliency-based target t racking.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
KustantajaSciTePress
Sivut17-21
Vuosikerta4
ISBN (elektroninen)978-989-758-175-5
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaJoint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Rome, Italia
Kesto: 27 helmik. 201629 helmik. 2016
Konferenssinumero: 11

Conference

ConferenceJoint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
LyhennettäVISIGRAPP
Maa/AlueItalia
KaupunkiRome
Ajanjakso27/02/201629/02/2016

Sormenjälki

Sukella tutkimusaiheisiin 'On the Contribution of Saliency in Visual Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Suomalainen laskennallisen päättelyn huippuyksikkö

    Xu, Y., Rintanen, J., Kaski, S., Anwer, R., Parviainen, P., Soare, M., Vuollekoski, H., Rezazadegan Tavakoli, H., Peltola, T., Blomstedt, P., Puranen, S., Dutta, R., Gebser, M., Mononen, T., Bogaerts, B., Tasharrofi, S., Pesonen, H., Weinzierl, A. & Yang, Z.

    01/01/201531/12/2017

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä